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THE MOTION OF A CARRIAGE WITH CONSTANT VELOCITY ALONG A BEAM OF 

INFINITE LENGTH RESTING ON A BASE WITH TWO ELASTIC CHARACTERISTICS* 

I.A. DUPLYAKIN 

The vertical oscillations of an infinite Bernoulli-Euler beam resting 
on a viscous inertial base with two elastic characteristics under the 
action of a deforming carriage which is continuously moving at a 
constant velocity is considered. The carriage, consisting of a system 
of rigid bodies with viscoelastic couplings between them, makes contact 
with the beam via viscoelastic springs at a finite number of points 
which allows the small vertical oscillations of the elements of the 
carriage to be described by a system of ordinary differential equations 
with constant coefficients. A technique is proposed for obtaining the 
asymptotic forms of the solution at long times. The asymptotic forms 
of the solutions are presented and they are analysed for certain types 
of loads. 

Unlike similar problems which have been considered previously (a review of the literature 
is given in /l/l, the formulae obtained enable one to construct asymptotic solutions which 
describe the interaction of the deforming carriage with the beam and, in particular, to 
investigate the rate and nature of the propagation of perturbations in the beam, the amplitude 
- frequency characteristics of the steady-state oscillatory regimes and the rate of con- 
vergence of a non-stationary solution to them and the growth in the flexure of the beam 
accompanying motions at critical velocities and when an oscillatory force at a resonant 

frequency acts on the carriage. 

1. Formulation of the problem. The reaction of the base is described by the differential 

equation 

r* (x*, t*) = - m, 3 + k,, 3 -h* 2 - kw, 

where w* = w,(x,,t,) is the flexure of the base, m,,k,,,k and h, are the virtual mass per 

metre, the elastic characteristics and the viscosity of the base respectively, t, is the 
current time and I* is the coordinate of a section. 

We shall use the following notation: EJ is the rigidity of the beam, P is its mass per 

metre, Ut is the velocity of motion of the carriage, 5, = x* - a*t* is the coordinate of 

a cross-section of the beam, y, = y,(g*,t*) is the deflection of the beam, a,* (t*) is the 
displacement in the n-th spring, !.,* is its coordinate, Yn* = Y, (En*, t*) is the deflection 
of the beam under the spring, m,,, are concentrated masses at the points 5,,, P,, CC+) are 
the forces applied to them, en* and P,,* are the coefficients of elasticity and viscosity 
of the n-th spring and qnle(t*) is the pressure of the carriage on the beam at a point s,,* 

(Fig.1). 
We now introduce the basic similarity coefficients 

R, = (!#’ , R, = (A);’ R, = (EJk)x 

with the dimensions of m, s and H, respectively, and write the initial equations in dimen- 
sionless variables in a travelling coordinate system associated with the carriage. The 

transition to dimensional quantities, which are denoted by an asterisk, is made by multiplying 
the dimensionless variables by the combinations of basic similarity coefficients which 

correspond to their dimensions. 
The equation for the bending of the beam is 

. . 
1” 

J$ +(2u2- k,)$--“-j& +2-!&-h++ h$+Y=~q,,(t)S(E--E,) (1.1) 
n=z 
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and the conditions for the carriage to be in contact with the beam (n = l,Z,...,N) are 

Small vertical oscillations of the elements of the carriage are described by linear 
ordinary differential equations with constant coefficients, while the relationship between 
the deformation of the springs and the displacements of the elements of the carriage is 
described by linear algebraic equations. The boundary and initial conditions are assumed to 
be null conditions. 
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2. A technique for constructing the asymptotic solution when t-tm. Let us successively 
apply a Fourier transformation with respect to g and a Laplace transformation with respect 
to t to Eq.fl.1). Then, 

where rl is a straight line lying to the right of the Rep = V,h. axis in the p-plane and I?% 
is the real axis in the a-plane. 

YLF (& a) = - 
1 i 

QDKP) n=l 
Q,(P) exPG&) 

Q, (c&p) = t1* - (29 - k,) aa + livpa + 2pe + y 
y = 1 - 'l,h* 

Q*(P)= s Pn (t)exPI(f/&- P) tldt 
‘l 

(2.2) 

(2.3) 

(2.4) 

Table l.O<~u<v, 
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Table 2. u>u, 

I Imar=O, k=l, 2, 3, 4, 
Reas<Rea&Beal<Bea, 

I Imat>O, Imas<O; 
Imal= Imar=O, R~CCI<~Q P E h+\b+ 

I Imar>O, Ima~>O, Imaa<O, Ima~<O P e h u 1% 

Let us now consider a function of the roots of the polynomial (2.3), a(p). Its branching 
points are determined from the equation 

R (a,, @a,‘) = 0 

where R(@,@,,') is the resultant of the polynomial @ and QR' /2/. From this, we obtain 

8pe-t (12y + v* - 10k,vZ - 2k,Z) p4 + (2.5) 
169 - y (k, - 29) (2k, + 59) + ‘l,k, & - 2v2)“lp2 + 

.y [y - I/, (k, - 2d)*P = 0 

We shall denote the branching points pij in accordance with the splicing of the branches 
of the function a(p) which is realized at these points. Eq.(2.5) indicates that there are 
two third-order branching points when v= O,k, = 0 and six first-order branching points when 

v>o or k,>O. By considering an analytic continuation from the real axis (the location 
of the roots uk of the polynomial (2.3) in the a-plane is shown for this case in Fig.l), it 
is possible to construct a domain where the function a(P) is single-valued and the cuts 
then pass along the rays 1, = [pr,,+ im), 1, = [pas,--im) and the simple curves 1, and 1, . . 
joining the points pto,& and p,,,p,, (The right and left banks of the cuts are subsequently 
indicated by a plus and a minus sign, respectively). The location of the cuts 11, in the p- 
plane is shown in Figs.3,a and b, respectively, for the cases when O<v<v, and u > ro 
(the limiting position of the cuts 1, and 1, and the domain of sinlge-valuedness where the 
function a (~1 is to be taken as being single-valued are shown in Fig.3,b). The conditions 
for the numbering of the roots of the polynomial (2.3), a,(p) are presented in Tables 1 and 
2. Here, 

v. = 1/ & I/r + &I2 (2.6) 

which corresponds to the coincidence of the branching points Prr and pas on the real axis. 
In practice, however, k, is small and we shall therefore take the plus sign in the equality 
(2.6). 

We note that the non-rigorous inequalities presented in Tables 1 and 2 can only turn into 
equalities at the branching points plr and paa. What is more, in order to obtain the values 
of the branches of the function a (p) on Z,- and l,-, it is necessary to take account of the 
obvious permutation aiCaj on passing around the branching points pi,. 

Using the residues, let us now find the Laplace transform of the function (2.1) 

Y,(p,I)=“~~a,(P)h,(P,~) (2.7) 

h, (p, E) = i j; =p y+cifx),y LJ’ (E Q En) 
k=1 

4 
h,(P,E)=--7 

exp [- ink (P) (5 - f,)l 
Q,’ (ak. P) (E > En) 

k% 

In the case of the functions h,(p, E), only the branching points ~14 and plS are 
singular since the functions h,(p, &) are symmetric with respect to the permutations ~+++a,, 
a3 - a4 and they have a finite limit at the points PI23 ISXV Part i&l. For the same reason, 
the functions h,(p, E) do not tolerate discontinuities in passing over 1, and I,. 

Let us put 5 = fit + n, where p is the group velocity of a packet of waves with a wave 
number a and write function (2-l), allowing for relationships (2.7), in the form 

(2.8) 
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fnk (P) = 
W, W exp [-- iak (P)(r) - f,)l 

a,’ (a,, P) 
Sk CP7 8) = P - 4 (PI B 

Let us now find the asymptotic forms of the integrals I,,, for large t by the method of 
steepest descent. We shall consider the case when the poles and the branching points pt4,pea 
axe the singular points of the functions f&(p). (Thiscondition is satisfied a fortiori if 
pulsed, constant or oscillatory forces are applied to the elements of the carriage). 

The crossing points of the functions S,(@+O) are determined from the equation 

R (CD, Y) = 0, Y (a, P) = %’ (a, P) + N% fa, P) 

and, from this, we obtain 

8~16 + [12y + @* - u")% f 2 (p" - 5~9) k, - 2k,*l p4 -I- 
(2y By -t V(V -t fl) (59 - 5BV + 2B’)l - (I? - fmr + 
Vs (19 - p*)l k, - ?‘2 14~ - Y (3~~ - 6% - @Y)l kr2 - 

--l/a (3~9 + B") k,* + V,k,“} pa + 

Y ur - US (u” - f.Y)l” + zv* fy i_ fYw - u”) k, - 
v2 (r+ fYv - 3~9) k,* - 1/,u2k,*-+-Y~gk14) = 0 

(2.9) 

Since the group velocity p depends on the real number a, it is necessary solely to 
consider those roots of the polynomial which are located on I, and I,. These roots determine 
the third-order crossing points when u = -& k, = 0 and the first-order crossing points when 

n+--fi or k, > 0. We shall denote them by pk* for the corresponding functions Sk. It 
is noted that the points plf,p~* are defined when b<O, while p3*7 p1* are defined when 
B>% and Pz* E Eli, Pa* EZ II+, Pz* E I,+, pa* E as+. 

The functions h,,(p,E) do not have discontinuities on I, and 1,. Hence, the sum of the 
integrals I,, -+- I,*. Ill.9 + I,* along the edges of these cuts are equal to xero and the initial 
contour rl can be deformed when B+=O into the contours rlk which satisfy the equation 

ReSkhB)=O, (k=1,2,3,4) 
The pass contours rll = 

A EZ E,‘, 3 E Is+) 
&,*C, rra = &,*B, rls = Bp,*G, / TX4 = dp&*F (A = + i 00, B = --f m, 

are shown in Fig.3a and b for certain values of p_ 
The contours Prz possess the following properties: 
a) just a single contour rIr passes through any paint of the half plane Rep>0 for a 

cextain p and a fixed k; 
b) the contours ‘rX1 and lYza,I?rs and Tla are pairwise symmetrical about the real axis 

in the p-plane since 

a3 @I = -a, bb a3 (fi) = -a,(p) 

When @ = 0, there are no crossing points and the integration is carried out along the 
Ft..r rlo = i,+ u I,- u Is+ u 1,. (If the function Q,(p) is single-valued, the integrals 
?a,, nr on l,+ u 1; and the integrals Zn2, 1,~ on 1,* t_l 1,- vanish since the corresponding 
integrands do not change their values on passing to the opposite edge of the cut). We note 
that the contour r,,, cannot be used as the pass contour since, when B#O, the kernels 
of the integrals I,,, have a non-integrable singularity at the branching points PM or p*a. 

Hence, the asymptotic forms of the integrals are determined by the contribution from the 
crossing points when P#O (the b ranching points when fl = 0) plus the sum of the con- 
tributions from the poles of the functions Q, (P) which the straight line rl passes through 
when it is deformed into the crossing contour. 

3. Asymptotic forms of the integrats I,,*. We will make use of the well-known formulae 
in /3/ in order to obtain the asymptotic expansions. 

The principal term of the asymptotic forms can be represented in the form 

z,, = p,i, + z:,, (3.1) 

where & is the contribution from the poles of the functions Q,(p) and & is the 
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contribution from the crossing points when B#O or from the branching points when fi = 0. 

ForniuZae for caZcuZating 1%. Let us introduce the function (taking account of in- 
equalities (2.8) and Tables 1 and 2) 

into the treatment and use the notation & = {Re Sk (p, p)> 0) U {Rep> 0) (k = 1, 2, 3, 4), pj 
are the poles of the function Q,(p)- 

Then, 

1% = qXj'nk(Pjrf')fes Q,(P~) (3.3) 

and, for p=Oxj = 0 when Repj<O (small terms of the order of 0 (e-c*), C > 0) were 
discarded in calculating the asymptotic fOrinS of the integrals i,&), Xj =2 when' Re pj 2x0 
and, for g# 0 XI= 0 when pj$D, u rn~, X_I= 1 when PIE m# \pk*, and Xl= 2 when'pjE&. 

Formdae for ca’kuZating i,,~l. Let just the poles be the singular points of the functions 

Q, (~1 (this condition holds when there is no carriage). We introduce the notation 

elk = 4 {2n 1 o + uak I [3akz - (p + v)’ + ‘iskAY (3.4) 
Bzr = exp {[--‘i&h + i (0 - @+)I t -t ‘/&knl 

where ak = aRtid are the roots of the polynomial (2.3). 
Let us consider the following cases. 
lo. The poles of the functions Q,(p) do not coincide with the crossing and branching 

points. Then, 

f”,k 5 Bkk i (- I)‘+1 
i 

+J$exp f- iuk (q - &J] t-‘h + 0 (t”*) 1 13.5) 
Ih 

where, when p #O, p# - v or fl = -v (k,>O) o = Im pk* for k = 1, 2,3,4 when p=o 
(u > 0 or k,>O) o = Imp,, for k = 1,4 and w =.Xmp,, for k = 2,3 and 

rkk zz eSk 
E 
i(- l)k+' -$$$ /wl-“*Qn(i~)t-‘l+ + O(t-“a)] 

(3.6) 

where, when @= -u(v>O,kx==O)o=xk~ for k=f,2 and, when f!=O {rt=k,=O) 
o=xri/yx for k= 1,2,3,4. 

2b. A pole of the function Q,(p) coincides with the crossing point @#O). Let us 
consider the function 

Q,g (p) = D, (P)% - P,,f (PO = Pk*) (3.7) 
Then, 

Ikk=esR i(-i)k+* 
{ *I 

D,’ (io) - + _-!L- + 
! o+vak 

i'l),li + q-&,)o,,(im)] exp[-iak(q-En)] t-' + '(t-*")} 

qnr = {Qak4 + [3k, - (2~ + 38) (3~ -I- Nl ati4 - 260ak -!F 

‘/,kIe - Vgkl (v + B) (2~ + B) + u (v + p)‘) X 

(3.8) 

{p [6aka + k, - 2 (0 + p)“] (0 + WK))-’ 

where p# -_y or @ = -Y (k,>O), w = Imp,+ for k = 1,2,3,4 and 

(3.9) 

where, when B= --v (U > 0, k, = 0) o = xk m for k e= 1, 2. 
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3”. A pole of the function Q,,(p) coincides with a branching point (fi = 0). We consider 
expression (3.7) when p0 = pl, or p0 =pls and transform the initial integrals (2.8) in the 
following manner: 

1 * 
Ink = 2nI exp it- ‘/ah + PO) t] Ink 

zzI, = s tD,(P)exP[--iak (E- En)1 
(P - PO) oa,’ k$’ P) 

exp [(P - PO) t1 dP 
f 

whence 

$I:, = iDn (P) exp [- iak (E - &,)I 
exp HP -Po) t1 dP 

In order to obtain the asymptotic forms of the last integral we make use of formulae 
(3.5) and (3.6) when p =O. Then, by integrating with respect to time, we get 

zkk = Otk 2i (- l)‘+lF exp [- ia, (5 -k”)] t’/’ + ‘(*I 
lk I (3.10) 

where, when V> 0 or k,>Oo=Imp,, for k=1.4 and 0 = Im pps for k = 2,3. 

$& 1 o l-‘/d D, (io) t’la + 0 (1)] (3.11) 

where v = k, = 0, o = XR m for k = 1, 2,3,4. 
4”. The function Q,,(p) has a pole of order m>l which coincides with a crossing 

or a branching point. Let us expand the function Q, (P) in a Laurent series in the neighbour- 
hood of the crossing (branching) point. Next, by reasoning using the method which has been 
described above, we get 

I,,,' = 0 @m-X) (p = 0, V> 0 or k,> 0) 

znkl = 0 (tm-“a) (p = 0, v = k, = 0) 

O(W-%), m- even 

m- odd 
(B#Oo,B#--) 

m- even 

, m-odd 
(B=-27, u>O) 

When the carriage is present, the poles and branching points PM9 Pan9 at which the 
functions Q,,(p) can have a zero value, are the singular points of the functions Qn b) . 
Hence, when p#O, the asymptotic forms which have been presented above remain completely 
valid and, when p = 0, it may be possible to refine them depending on the actual construction 
of the carriage. 

In concluding, we note that, if 
-- 

Q,(p)=Q” (p), then, when account is taken of (2.10), 
the equalities 

- - 
I,,' = I,,? Z,,l = I,,1 

hold. 

4. ATl&jSis Of i%S aSynptOt* SOZUtiOnS for Certain types Of loads. Let us consider the 
case when N = 1, El= 0 (the unit subscript is subsequently omitted). 

The action of a concentrated force. Let a pulsed force 

'p (t) = 6 (t), Q (p) = G, 1,’ = 0 

be applied to the beam. 
Formulae (3.5) and (3.6) show that the frequency a;= 1 ImPu 1 (the smallest in the 

spectrum of the characteristic frequencies of the beam) is the fundamental, that is, the 
frequency which determines the form of the oscillations of the beam with the passage of time 
in the neighbourhood of the point where the force is applied. Curve 1 in Fig.4 illustrates 
the change in this frequency as the velocity v increases according to.Eq.(2.5). The parameter 
p has the meaning of the group velocity of the motion of the wave packet and is equal to the 
rate of energy propagation. It follows from this that the energy transfer within the beam 
occurs from the point of application of the force to infinity. Here, the flexural wave does 
not have a front: at the moment when the force is applied, the perturbations encompass the 
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whole beam. Actually, 

f3 (CQJCI q%o~, cck (x,io),_ F 2'/rO%Xk0+ + M 

that is, the group velocity is unbounded and infinitely short waves instantaneously depart 
to infinity. This defect is a consequence of the fact that Eq.Cl.1) is of the parabolic 

type. 
lOi 

Let us now 

0 05 I 7.0 v 

Fig.4 

consider the action of a constant force 

971 

% 

2 3 

Fig.5 

q (t) = H (t), Q (P ) = (P - ‘/J-’ 

on the beam where H(t) is the Heaviside function. 
In accordance with formula (3.3), the contribution of the pole pr = 'i,h describes the 

perturbations in the beam, the quasifront of which propagates with velocities $-(0 and 

p+> 0, that is, 

1 
0, B>B’T B<F 

x1= 1, B=B-, p=j+ P”>o or h = 0, u > uo) 

2, B-<P<B’ 

where u0 is calculated using formula (2.6). 
Hence, when U<V,,k= 0, a symmetric bending of the beam is established with the 

passage of time which decreases exponentially with respect to 5 (when n>o, a displacement 

of the beam profile occurs in a direction opposite to the motion of the force), the energy of 
which is not radiated to infinity since there is no quasifront (fi- = p'= 0). In the course of 
time when v> Va the solution is represented by two since curves of differing frequency and 
amplitude which propagate in opposite directions with group velocities fi' and p-. Moreover, 

their quasifront is "blurred" (formulae (3.8) and (3.9)). If the force moves at the critical 

velocity v = v0 (J. = 0). then the Ii;' are calculated using formulae (3.5) and (3.6) when 

p#O and, using formulae (3.10) and (3.11) when p = 0. It can be seen from this that a 

constant force brings about an unbounded increase in the bending of the beam in the neighbour- 
hood of the point of application of the force. 

The appearance of a resonance under the action of the oscillatory force 

g (t) = H (t) exp (+,t), Q (P) = (P - i@,)-r (h = 0) 

is especially graphic. 
The coincidence of a pole p1 = io, with one of the branching points p14 or pz3 (formulae 

(3.10) and (3.11) corresponds to the appearance of a resonance. By solving Eq.(2.5) for v, 
it is possible to calculate the corresponding critical velocities of the motion. 

The action of a force applied to a concentrated mass. Let us now consider the action of 

a pulsed force P(t)= 6(t). When account is taken of Eq.(1.2), we have 

Q (p) = tm (p - 'l,h)% (p, 0) + II-’ 

The branching points plc and pz3 and the two complex conjugate poles which disappear 

when v = vO, h= 0 serve as the singular points of the function Q(p). Investigations which 
were carried out showed that a critical velocity of the motion of a load 01 appears in the 

presence of a concentrated mass and that, when this velocity is exceeded, the poles reach the 

half plane He ~>‘:~h which leads to an exponential increase in the solution which is 
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proportional to the time t. The dependence of m on VI for certain values of the viscosity 
h (ki = 0) is shown in Fig.5. Here, V, em vg when h==O. Similar curves have previously 
been found using a different method /4/. 

When m>l,Ogh%f, k,=O, it is possible to use an approximate formula, obtained 
by the perturbation method /S/, to calculate the poles of the functions Q(p) 

pI,* E V,h + i I8 (1 - ua)l”~m-‘~ (0 < v C 1) (4.1) 

If v=u,(h=O), then the function Q(P) is not equal to zero at the branching points 
and pas and the asymptotic forms of the integrals 

(?5) and (3.6). 
1,' are calculated using formulae 

When V# v. (@ = 0) the estimates 

1,’ = 0 (0) (V > 0 or k, > 0) 
1,’ = 0 (t-‘1.) (v = k, = 0) 

(4.2) 

hold. 
Hence, when v<v,, h = 0, a pulsed force gives rise to non-decaying harmonic oscil- 

lations in the neighbourhood of a concentrated mass, which are determined by the contribution 
of the poles p1 and ps with a frequency a* = I Wh.A (and, correspondingly, decaying 
oscillations whenever there is viscosity) which is the lowest frequency in the spectrum of 
the characteristic frequencies of the beam. 

Curves 2 in Fig.4 show the change in the frequency o* as a function of the velocity 
of the motion of a mass m=fw when k, = 0 (the solid line is the exact solution and the 
broken line is the approximate solution obtained using formula (4.1)). We also note that the 
poles p1 and pa do not give rise to the appearance of a quasifront when a= 0, O<v< vg- 

Let us now consider the action of an oscillating force when h = 0 

P (t) = H (t) exp (io,2) 

Q (~1 = (P - h&J- Imp% (P, 0) -+ 11-l 

If u = not the asymptotic forms of the integrals ?,I (@ = 0) are calculated using 
formulae (3.5) and (3.6) when o,#O and (3.10) and (3.11) when cllg = 0. If 0 Q Y < t'l), 
then, when c@,f Imp,, and, when o. P Imp,,, the estimates (4.2) hold for I,' while, when 
o0 = Imp,, or o0 = Im pao 

1,’ = 0 (t-S) (V > 0 or k, > 0), 

Ix1 = 0 (t-‘/a) (v = k, = 0) 

Hence, a resonance only arises when Iwe I = at or o. = 0 (v = u&In the first case, 
the bending of the beam increases in proportion to t (a double pole in the case of the func- 
tion Q(P)) while, in the second case, it increases in proportion to t’h. 

The action of a force applied to a spring-mounted mass. The equation of the oscillation 
of the mass has the form 

Let us now consider the action of a pulsed force P(t) =6(t): 

Q (p) == a (p) b-’ (p), 2 (p) = la (p) k (p, 0) -t- $1 b-’ (p) 

b (P) = m (P - V&)2 a (P) k (P, 0) + 
m (p - ‘/*h)Z + a (P), a (P) = IL (P - ‘/A + E 

2 (t) = 
exp (-- vaw 

f 2ni y Z (P) ept +J 
r, 

The branching points plr and PM and the two complex conjugate poles located in the 
half plane Rep<'lJ are the singular points of the functions Q (14 and Z(P) 

When m>>, O< h((l, k, = p = 0, the approximate formulae 

(4.31 

pl.a = il,h -t_ i (s/m)‘& (u = 1) 
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obtained by the perturbation method, can be used to calculate the poles of the function Q(p) . 
As in the case of the motion of a concentrated mass, the asymptotic forms of the integrals 

Ikl when p = 0 (for any v> 0) are estimated using formulae (4.2). The relationships 

z(t) = i exp[(Pj-lj&)t]reaZ (Pj) + IL 
I=1 

I,=exp(- l/,ht)cos(ot + 'iani 
[ 

811 
FZ m* (io - 1/4l)4 

t-a/z + 0 (t-'/l) 
1 

(0 = Im p14, u > 0) 

(0=1/q% u=oj 

hold in the case of the spring deformation function. 
Hence, when v( uO, h = 0, a pulsed force gives rise to non-decaying harmonic oscil- 

lations of the beam in the neighbourhood of the point of contact 5 = 0 and of the spring- 
mounted mass with a frequency w,, = 1 Imply, / (and, correspondingly, to decaying oscillations 
whenever there is viscosity) which is the lowest frequency in the spectrum of the character- 
istic vibrations of the beam. When v> UCII the poles p, and p2 are located in the half 
plane Rep < 'I&. Hence, the amplitude of the oscillations of the beam and of the spring- 
mounted mass decays exponentially. As in the case of a concentrated mass, these poles do not 
lead to the emergence of a quasifront when h = 0. 

Curves 3 in Fig.4 show the change in the frequency o* as a function of the velocity 
of motion of a mass m = 100 when k, =O (the solid line is the exact solution and the 
broken line is the approximate solution obtained using formula (4.3)). 

to 
in 

1. 

2. 

3. 
4. 

5. 

Note that, when h===p=U, the action of an oscillating force p(t) = exp(io,l) leads 
the occurrence of a resonance when * < u0 and to a finite (although significant) maximum 
the amplitude of the oscillations when u>v,,. 

The author thanks V.M. Aleksandrov for his supervision and interest. 
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