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THE MOTION OF A CARRIAGE WITH CONSTANT VELOCITY ALONG A BEAM OF
INFINITE LENGTH RESTING ON A BASE WITH TWO ELASTIC CHARACTERISTICS®

I.A. DUPLYAKIN

The vertical oscillations of an infinite Bernoulli-Euler beam resting
on a viscous inertial base with two elastic characteristics under the
action of a deforming carriage which is continuously moving at a
constant velocity is considered. The carriage, consisting of a system
of rigid bodies with viscoelastic couplings between them, makes contact
with the beam via viscoelastic springs at a finite number of points
which allows the small vertical oscillations of the elements of the
carriage to be described by a system of ordinary differential equations
with constant coefficients. A technique is proposed for obtaining the
asymptotic forms of the solution at long times. The asymptotic forms
of the solutions are presented and they are analysed for certain types
of loads.

Unlike similar problems which have been considered previously (a review of the literature
is given in /1/), the formulae obtained enable one to construct asymptotic solutions which
describe the interaction of the deforming carriage with the beam and, in particular, to
investigate the rate and nature of the propagation of perturbations in the beam, the amplitude
- frequency characteristics of the steady-state oscillatory regimes and the rate of con-
vergence of a non-stationary solution to them and the growth in the flexure of the beam
accompanying motions at critical velocities and when an oscillatory force at a resonant
frequency acts on the carriage.

1. Formulation of the problem. The reaction of the base is described by the differential
equation

Pwy . Ofwx dwy
rﬂwm=—%7F+M7$-Mm*—m*

where w, = w, (%4, &) is the flexure of the base, mg, ki, k and A, are the virtual mass per
metre, the elastic characteristics and the viscosity of the base respectively, {, is the
current time and 2z, 1is the coordinate of a section.

We shall use the following notation: EJ is the rigidity of the beam, P 1is its mass per
metre, Uy 1is the velocity of motion of the carriage, Be = T, — V4, 1is the coordinate of
a cross-section of the beam, Yx = Y« (Es, &x) is the deflection of the beam, 2,,(t,) 1is the
displacement in the n-th spring, &.x is its coordinate, ¥ns = ¥x (Ens» ls) is the deflection
of the beam under the spring, m,, are concentrated masses at the points §,,, P, (f,) are
the forces applied to them, e,y and p,, are the coefficients of elasticity and viscosity
of the n-th spring and ¢, (l,) 1is the pressure of the carriage on the beam at a point Enx
(Fig.1).

We now introduce the basic similarity coefficients

m=(5) me (R

with the dimensions of m, s and H, respectively, and write the initial equations in dimen-
sionless variables in a travelling coordinate system associated with the carriage. The
transition to dimensional quantities, which are denoted by an asterisk, is made by multiplying
the dimensionless variables by the combinations of basic similarity coefficients which
correspond to their dimensions.

The equation for the bending of the beam is

R, = (EJky%

N
7, % 82 3%y dy Ay \
a; + (202 — k) a{a —411—5557—%—2—3[7—7"”—6?"‘ 7»7+!/=Z{Qn(t)5(§~—§n) (1.1)
n=

#Prikl.Matem. Mekhan.,55,3,461-471,1991 176



377

and the conditions for the carriage to be in contact with the beam (rn=1,2,..., N) are
d*y dy dz
mnfg}#”}‘”n(“&l—T;)'{"en(yn_zn):Pn(t)""Qn(t) (12)

Small vertical oscillations of the elements of the carriage are described by linear
ordinary differential equations with constant coefficients, while the relationship between
the deformation of the springs and the displacements of the elements of the carriage is
described by linear algebraic equations. The boundary and initial conditions are assumed to
be null conditions.
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2. A technique for constructing the asymptotic solution whem t— oo. Let us successively
apply a Fourier transformation with respect to § and a Laplace transformation with respect
to t to Eq.(1.1). Then,

@y =22 ({0 (p,a)exp (pt— iah) dadp @1
I, N
Yir(pr o) = gz D, On (P)exp (ioky) (2.2)
=5 s
D (a, p) = at — (2v® — k) o® + 4ivpa + 2p% + ¥
Y= (2.3)
Qu(p)=§ 0. (1) exp[(/h— p) ]t 2.4)

where T; is a straight line lying to the right of the Rep = %, axis in the p~plane and T,
is the real axis in the a-plane.

Table 1. 0r<y,y

Ima; >0, Imay < 0; +
Imos =Imeay=0, Reas<CRea et
Imea; >0, Imoy <0; psht

Imay=Imas=0, Rea;{Reny

Ime; >0, Imay>0, Imas<0, Ima<0 pELUL
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Table 2. v>v,

Ima; >0, Imaa<0;
Imog = Imas=0, Reag< Reag p=L"Nhgt
Imaoxy =0, k=1, 2, 3, 4,
Reas <Reas< Reay < Rea, psht it
Imay >0, Imay<0;
Tmoy = Imay=0, Reas< Rec pehN\L
Imeo; >0, Imoa; >0, Imag<C0, Ima,<0 pelh Ul
Let us now consider a function of the roots of the polynomial (2.3), a(p). Its branching
points are determined from the equation
R(D, D) =0

where R (@, D,’) is the resultant of the polynomial ¢ and @, /2/. From this, we obtain

8pS 4 (12y + vf — 10kp?® — 2k,%) p* + (2.5)
[6v2 — v (b, — 207) (2ky + 50%) + Yk, (ky — 20%)°)p* +
Yy — Y4y — 2P = 0

We shall denote the branching points p;; in accordance with the splicing of the branches
of the function @ (p) which is realized at these points. Eq.(2.5) indicates that there are
two third-order branching points when v= 0,k =0 and six first-order branching points when
v>0 or k >0. By considering an analytic continuation from the real axis (the location
of the roots a; of the polynomial (2.3) in the d-plane is shown for this case in Fig.2), it
is possible to construct a domain where the function @ (p) is single-valued and the cuts
then pass along the rays ! = [py, + io0), Iy = [pas, —i©) and the simple curves I, and I,
joining the points py,, Py, and  pgq, P3¢ (The right and left banks of the cuts are subsequently
indicated by a plus and a minus sign, respectively). The location of the cuts Iy in the p-
plane is shown in Figs.3,a and b, respectively, for the cases when 0 <<v<Cv, and v >,

(the 1limiting position of the cuts !; and I, and the domain of sinlge-valuedness where the

function o (p) is to be taken as being single-valued are shown in Fig.3,b). The conditions
for the numbering of the roots of the polynomial (2.3), oy {(p) are presented in Tables 1 and
2. Here,

vo=V £ Vy+ k2 (2.6)

which corresponds to the coincidence of the branching points P;. and py3 on the real axis.
In practice, however, k; 1is small and we shall therefore take the plus sign in the equality
(2.6).

We note that the non-rigorous inequalities presented in Tables 1 and 2 can only turn into
equalities at the branching points pj¢ and p,;. What is more, in order to obtain the values
of the branches of the function a(p) on I,- and I;°, it is necessary to take account of the
obvious permutation o;<>@; on passing around the branching points p;-

Using the residues, let us now find the Laplace transform of the function (2.1)

N
Yi(p.D = 3 Qulp)hn(p.D @)
2
& exp [— ioy () (R —E,)]
R ) €<E)
k=1
4
. exp [— i, (P} (§—§,)]
hap B = =1 ) gt €>t)

k=3

In the case of the functions £k, (p, &), only the branching points pi:x and p,; are
singular since the functions %, (p, §) are symmetric with respect to the permutations a, « a,,
as+>d; and they have a finite limit at the points Pis, Pizy Pse» Py FOr the same reason,
the functions &, (p, ) do not tolerate discontinuities in passing over Iy and I,.

Let us put E=ft+ 1, where 8 is the group velocity of a packet of waves with a wave
number ¢ and write function (2.1), allowing for relationships (2.7), in the form

N
y(mt)= "z; Yn (N 2) (2.8)



379

Yn (ny t)zlul (71» t)+1n2(nv 3]
for ﬁ<0 or ﬂ=0vn<§n
yn(q! o= —Tpy(n, 8) — Iy (qv 1)
for >0 or B=0, > &,

L (n, 1) = R4 § Fox (P) exp [£S (p, )] dp

3
1

_ 0, (p)exp [—ia (p) (n—E,)]
fnk (P) . (Da.’ (akv »)

Se(p, B)=p — i (P) B

Let us now find the asymptotic forms of the integrals I, for large t by the method of
steepest descent., We shall consider the case when the poles and the branching points P, Pea
are the singular points of the functions @, (p). (Thiscondition is satisfied a fortiori if
pulsed, constant or oscillatory forces are applied to the elements of the carriage).

The crossing points of the functions Sy (f 5= 0) are determined from the equation

R(@,Y) =0,V (a p)=0 (a p) + 0 (@ p)

and, from this, we obtain

8pf + [12y + (B* — v*)* + 2 (B* — 5v®) by — 2)%] p* + (2.9)
{2y 3y + v{w + B) (5v* — 5pv + 2p)] — (* — Py +
B (0F — B ky — Yy ldy — v (30® — B — 2P k2 —
= (3% 4 B Ry® + Yok pf
vily — v @ — P 4+ 27y + BB — o) K, —
Yy (p P22 — 308 ky? — Ypth® -+ Vyekyt) = 0

Since the group velocity § depends on the real number «, it is necessary solely to
consider those roots of the polynomial which are located on }; and [;,. These roots determine
the third-order crossing points when v= —f, &, = 0 and the first-order crossing points when
vet —f or k> 0. We shall denote them by p,* for the corresponding functions Sy It
is noted that the points p,*, p.* are defined when f<0, while p;* p* are defined when
>0, and L pr el el pteE .

The functions 4, {p, &) do not have discontinuities on I; and I, Hence, the sum of the
integrals [, + J.4, f.3 + {4 along the edges of these cuts are equal to zero and the initial
contour T; can be deformed when fs0 into the contours TI,, which satisfy the equation

Re Sy (p, ) =0, (k =1,2,3,4)

The pass contours I'y;, = 4Ap*C, Ty = Bp*D, Tyy = Bpy*G,i Ty = Ap*F (4 = + ioo, B = —ioa,
Aelt, Belh) are shown in Fig.3a and b for certain values of B.

The contours TIjx possess the following properties:

a) just a single contour T, passes through any point of the half plane Rep >0 for a
certain B and a fixed k;

b) the contours Ty and Ty, Ty and T,y are pairwise symmetrical about the real axis
in the p-plane since

%y (P) = —oy (p)s 3 (B} = —0, (p) (2.10)

When B = 0, there are no crossing points and the integration is carried out along the
contour Ty =4*J 4 U L" U 4. (If the function @, (p) is single-valued, the integrals
Inpwly on L*{J I  and the integrals I, I, on 4" |J I” vanish since the corresponding
integrands do not change their values on passing to the opposite edge of the cut). We note
that the contour Tj, cannot be used as the pass contour since, when P =0, the kernels
of the integrals [, have a non-integrable singularity at the branching points DPu or Pg.

Hence, the asymptotic forms of the integrals are determined by the contribution from the
crossing points when P30 {the branching points when f =0) plus the sum of the con-
tributions from the poles of the functions ¢, {p) which the straight line I, passes through
when it is deformed into the crossing contour.

3. Asymptotic forms of the integrals I.n. We will make use of the well-known formulae
in /3/ in order to obtain the asymptotic expansions.
The principal term of the asymptotic forms can be represented in the form

L=y + D 3.1)

where [3: is the contribution from the poles of the functions @, {p) and It is the
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contribution from the crossing points when B0 or from the branching points when f§ = 0,
Formulae for caleulating I%ws. Let us introduce the function (taking account of  in-
equalities (2.8} and Tables 1 and 2)

iexp {[— Yk + 8y (p, B)) ¢ — ty, (n—
Tnk (P ﬁ) = - o0 7 (s ) ) 1 E (3.2)
22

into the treatment and use the notation Dy = {Re Sy (p,f) >0} J {Rep >0} (k=1, 2, 3, 4), p;
are the poles of the function @, {(p)
Then,

I(r}tk == ?)X{"'nk (pj? p)res Qnlpy) (3.3)
and, for PB=0¢%;=0 when Rep;< 0 (small terms of the order of O, c >0}, were

discarded in calculating the asymptotic forms of the integrals I.,), %, =2 when Rep;> ]
and, for B0y, =0 when p,ED, T, 1, =1 when p; & Iy \\ ;*, and ;= 2 when p; & D,.

Formulae for caleulating I.'. Let just the poles be the singular points of the functions

@, (p) (this condition holds when there is no carriage). We introduce the notation
8 = 4 {20 | @ + vay | [Bou? — (B + 0)* + Yo} (3.4)
O = exp {[—'h + i (0 — Poy)] ¢ + Hainen}

1, k=14
By = exp [(— Yok + i0) 2 + Vsiugr], ""”‘{—_1, E=2,3

where o, = @ (i®) are the roots of the polynomial (2.3).

Let us consider the following cases.

1°. The poles of the functions @, {p) do not coincide with the crossing and branching
points. Then,

( 1, -3
T = O i (— 9 2 - oxp [ i (1 — )1 17% £ 0 %) (3.5)
where, when PB#0, fs=—v or Pp=—v# >0 o=Imp* for k=1, 2,3, % when B =0
w>0 or k>0 w=Inp, for k=14 and @ =Impy, for £ =2,3 and
P = s [ (= )9 T8 [0+ Qn (i) 0 4 0 () (3.6)
where, when B= —v{ >0,k =0 0=%Vy2 for k=1,2 and, when =0 (=4 = 0)

o =% V7V2Z for k=1,2 84
2°. A pole of the function @, (p) coincides with the crossing point (§s=0). Let us
consider the function

0 (p) = D (B)(p — Po) (Po = Px*) @.7)
Then,

Iy = 0y, {3 (— 1) [D (i) — é <__.i"__ + 3.8)

]/n 0 o + vy
i+ 11— Bn) Da (10) ] exp [— i (0 — B} £7% + 0 (7}

P = {9oy* + [3k, — 2v + 3B) Bv + P) oy® — 2Pway +
I/Cklz — Ygky (v + B) (20 + B +v-+ B)*} X
{B (6o + &, — 2 (v + ) (0 + va)}?
where B —v or B= —vp (k, >0 ©=Imp* for k=14,2,3,4 and
T =0y, {1 (— 10 _——-Sryf,;i‘)“ lo| s x 3.9

[D," (i) + ("21’327 + l——;-i) Dn((im)} £ 0(3—’1‘)}

where, when B = —v (t>0, k =0) 0 =%V v2 for k=1,2.
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3°. A pole of the function @, (p) coincides with a branching point (f = 0). We consider
expression (3.7) when p, = pj, Or Py, = P33 and transform the initial integrals (2.8) in the
following manner:

1

Ly = - 0xp [(— Yk + po) ] Ik

* 5 iD_ (p) exp [—ia, (E—E,))
nk =

P— Dy (ap, ) P [(p —po)t] dp

whence

d o iD_(p)exp[—io (§—E,)] —pyild
TI“=§ T exp[(p — po)t] 4P

In order to obtain the asymptotic forms of the last integral we make use of formulae
(3.5) and (3.6) when P =0. Then, by integrating with respect to time, we get

D_(iw}

B2 0 T2 exp [ e — 814 O] (3.40)

1k

where, when v >0 or k >0 ea=Impy, for k=14 and o =Imp,y for k=23,

Iy =04 [i (— 1)k+1_65l}_‘219n_ [o[*+ D, (iw) £ + O (1)] (3.11)

where v==F =0, 0o =%, YV y/2 for k =1, 2, 3, 4.
4°. The function @, (p) has a pole of order m>>1 which coincides with a crossing
or a branching point. Let us expand the function @»{(P) in a Laurent series in the neighbour-
hood of the crossing (branching) point. Next, by reasoning using the method which has been
described above, we get
It =0 (%) (p=0,v>00r k>0
I =0 (=0 v==~r=0)

O (thm™-"%), m— even

Ink_{O(t'/. m-1),  m— odd B==0,p=—)
O (thm™-*), m— even - N
I"k_{O(t‘/- ), m— odd fp=—v, v>0)

When the carriage is present, the poles and branching points Pio Pass at which  the
functions @, (p) can have a zero value, are the singular points of the functions €. (p) .
Hence, when f§3 0, the asymptotic forms which have been presented above remain completely
valid and, when f =0, it may be possible to refine them depending on the actual construction
of the carriage. -

In concluding, we note that, if @, (5) = @, (p), then, when account is taken of (2.10),
the equalities

— — 1
Inll - Inzlv Indl - Ina

hold.

4. Analysis of the asymptotic solutions for certain types of loads. Let us consider the
case when N =1, §; =0 (the unit subscript is subsequently omitted).

The action of a concentrated force. Let a pulsed force
g =561, Qm=¢6 I)*'=

be applied to the beam.

Formulae (3.5) and (3.6) show that the frequency @, = |Im pa| (the smallest in the
spectrum of the characteristic frequencies of the beam) is the fundamental, that is, the
frequency which determines the form of the oscillations of the beam with the passage of time
in the neighbourhood of the point where the force is applied. Curve I in Fig.4 illustrates
the change in this frequency as the velocity v increases according to Eq.(2.5). The parameter
B has the meaning of the group velocity of the motion of the wave packet and is equal to the
rate of energy propagation. It follows from this that the energy transfer within the beam
occurs from the point of application of the force to infinity. Here, the flexural wave does
not have a front: at the moment when the force is applied, the perturbations encompass the
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whole beam. Actually,
P (o) =~ F2%ek, oy (xi0) = F Mok > + oo
that is, the group velocity is unbounded and infinitely short waves instantaneously depart

to infinity. This defect is a consequence of the fact that £q.(l1.1) is of the parabolic
type.
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Let us now consider the action of a constant force
gty =H (), Q(P)=(p — Y\

on the beam where H (f} is the Heaviside function.

In accordance with formula (3.3), the contribution of the pole p; =Y, A describes the
perturbations in the beam, the quasifront of which propagates with velocities B~ <0 and
f* >0, that is,

0, p>p" p<lp

n=14% B=p, gpr (>0 0rr=0v>0v)

2, B <B<B
0, B0
n=1{y pog (=0 0<v<ry
_ A A
b=~ Timam = Tmam *>9)
0, 0Lv<,
_ —0
P ‘{iV‘l[(V‘—1)—02k1+1/4k12]‘/'1 v>u =0

where Uy, 1is calculated using formula (2.6).

Hence, when Vv << vy, A= 0, a symmetric bending of the beam is established with the
passage of time which decreases exponentially with respect to § (when A™>0, a displacement
of the beam profile occurs in a direction opposite to the motion of the force), the energy of
which is not radiated to infinity since there is no quasifront (B~ = f* = 0). 1In the course of
time when v > Vs the solution is represented by two since curves of differing freguency and
amplitude which propagate in opposite directions with group velocities B* and B~. Moreover,
their quasifront is "blurred" (formulae (3.8) and (3.9)). If the force moves at the critical
velocity v =uv, (A= 0), then the I,! are calculated using formulae (3.5) and (3.6) when
Bs£ 0 and, using formulae (3.10) and (3.11) when p=0. It can be seen from this that a
constant force brings about an unbounded increase in the bending of the beam in the neighbour-
hood of the point of application of the force.

The appearance of a resonance under the action of the oscillatory force

q (1) = H () exp (ingt), @ (p) = (p — iwg)* (A =0)

is especially graphic.

The coincidence of a pole p; = iw, with one of the branching points p,, or p,; (formulae
(3.10) and (3.11) corresponds to the appearance of a resonance. By solving Eq.(2.5) for v,
it is possible to calculate the corresponding critical velocities of the motion.

The action of a force applied to a concentrated mass. Let us now consider the action of
a pulsed force P (t) = § (f). When account is taken of Eq.(1.2), we have

Q(p) = [m (p — YW (p, 0) + 417

The branching points p,, and p,;; and the two complex conjugate poles which disappear
when v =uv, A =0 serve as the singular points of the function @ (p). Investigations which
were carried out showed that a critical velocity of the motion of a load v; appears in the
presence of a concentrated mass and that, when this velocity is exceeded, the poles reach the
half plane Rep >1,A which leads to an exponential increase in the solution which is
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proportional to the time t. The dependence of m on v; for certain values of the viscosity
Alle,=0) is shown in Fig.5. Here, 1w =v, when A=0., Similar curves have previously
been found using a different method /4/.

When m>1, 0{A<€1, k, =0, it is possible to use an approximate formula, obtained
by the perturbation method /$/, to calculate the poles of the functions ¢ (p)

Pre=UA4-i18(1 — vH)lm ™ (0 v <) (4.1)

If v=rs{A=0}, then the function ¢@(p} is not egual to zero at the branching points
P and py,, and the asymptotic forms of the integrals [! are calculated using formulae
(3.5) and (3.6). When Vv=v,{f=10) the estimates

Il=0(" (v>0 or k >0) (4.2)
IA=0@" (v =1k =0)

hold.

Hence, when v <Cw, A= 0, a pulsed force gives rise to non-decaying harmonic oscil~
lations in the neighbourhood of a concentrated mass, which are determined by the contribution
of the poles p, and p, with a frequency @, = |Imp, 4l (and, correspondingly, decaying
oscillations whenever there is viscosity) which is the lowest frequency in the spectrum of
the characteristic frequencies of the beam.

Curves 2 in Fig.4 show the change in the frequency ©, as a function of the velocity
of the motion of a mass m=100 when k&, =0 (the so0lid line is the exact solution and the
broken line is the approximate solution obtained using formula (4.1)). We also note that the
poles p; and p, do not give rise to the appearance of a quasifront when A =0, 0 v << v,

Let us now consider the action of an oscillating force when i =0

P () = H () exp (iwgt)
Q (p) = (p — iy [mp®h (p, 0) + 117

If » = v the asymptotic forms of the integrals [} (B = 0) are calculated using
formulae {3.5) and {3.6) when @, 0 and {3.10) and (3.11) when @, =0. If 0 vr<v,
then, when ®, % lm p,, and, when ©, % Im py3, the estimates (4.2) hold for I,! while, when
w, = Imp;y or o, =Impy,

It =0 (%) (>0 or k >0),
I =00 (v="F =0
Hence, a resonance only arises when |®@,| =6, or w,=10 {v="0,).In the first case,

the bending of the beam increases in proportion to t (a double pole in the case of the func-
tion @ (p)) while, in the second case, it increases in proportion to t%.

The action of a force applied to a spring-mounted mass. The equation of the oscillation
of the mass has the form

g —b( =)= =P €=0

Let us now consider the action of a pulsed force 2P (i) = 6 (I):

Q(p) =al(p) bt (p), Z(p) =la(p)h(p, 0) + 1157 (p)
b(p) =m(p— YM2a(p)h(p, 0)+
mp—YAt+a(p),a@)=p{p—Yh +e

2 (1) =-2RC8D (7 (p) P dp

2t
r!

The branching points Pu and p,; and the two complex conjugate poles located in the
half plane Rep < 's» are the singular points of the functions Q(p) and Z(p)-
when m> 1, 0 A€, k, =p =0, the approximate formulae

—1 : 2e V2 {(1— v }x‘/’
Pramifhi | D ooy (4.3)
Piz = Y h A i (elmy%n (v = 1)

a1 i s Vi =1y }l’/’ ~
Pra /4Lil{m[V(v‘—1)’+‘/¢Aua] w>1
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obtained by the perturbation method, can be used to calculate the poles of the function @(p) .
As in the case of the motion of a concentrated mass, the asymptotic forms of the integrals
I, when B =0 (for any v>0) are estimated using formulae (4.2). The relationships

2
2(t) = X exp[(p; — /M) tres Z(py) + I
j=1
_ _ 1 | 61 -2/, -5/y ]
1, = exp (— Y4he) cos (ot + 1/,m) [———ﬁ S o)
(0 = Im pyy,, v >0)
i 20 3N, -
1, = exp (— ¥/ M) cos (ot -+ 3/gm) l %F(T): le 4+ O(t /‘)]

(0 =Vv2 v =0

hold in the case of the spring deformation function.

Hence, when v<Cv,, A =0, a pulsed force gives rise to non-decaying harmonic oscil-
lations of the beam in the neighbourhood of the point of contact § =0 and of the spring-
mounted mass with a frequency ®, = |Impy,| (and, correspondingly, to decaying oscillations

whenever there is viscosity) which is the lowest frequency in the spectrum of the character-
istic vibrations of the beam. When v>v,, the poles p; and p, are located in the half
plane Rep < !,A. Hence, the amplitude of the oscillations of the beam and of the spring-
mounted mass decays exponentially. As in the case of a concentrated mass, these poles do not
lead to the emergence of a quasifront when A =0.

Curves 3 in Fig.4 show the change in the frequency o, as a function of the velocity
of motion of a mass m = 100 when k, =0 (the solid line is the exact solution and the
broken line is the approximate solution obtained using formula (4.3)).

Note that, when A = p =0, the action of an oscillating force P (f) = exp (iw,?) leads
to the occurrence of a resonance when v<(v, and to a finite (although significant) maximum
in the amplitude of the oscillations when v > v,.

The author thanks V.M. Aleksandrov for his supervision and interest.
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